Investigation and comparison of GaN nanowire nucleation and growth by the catalyst-assisted and self-induced approaches

نویسندگان

  • Caroline Chèze
  • Christoph Markschies
  • W. T. Masselink
چکیده

This work focuses on the nucleation and growth mechanisms of GaN nanowires (NWs) by molecular beam epitaxy (MBE). The two main novelties of this study are the intensive employment of in-situ techniques and the direct comparison of selfinduced and catalyst-induced NWs. On silicon substrates, GaN NWs form in MBE without the use of any external catalyst seed. On sapphire, in contrast, NWs grow under identical conditions only in the presence of Ni seeds. NW nucleation was studied in situ by reflection high-energy electron diffraction (RHEED) in correlation with line-of-sight quadrupole mass spectrometry (QMS). The latter technique allows to monitor the incorporated amount of Ga. For the catalyst-assisted approach, three nucleation stages were identified: first incorporation of Ga into the Ni seeds, second transformation of the seed crystal structure due to Ga accumulation, and last GaN growth under the seeds. The crystalline structure of the seeds during the first two stages is in accord with the Ni-Ga binary phase diagram and evidenced that only Ga incorporates into the Ni particles. GaN forms only after the Ga concentration is larger than the one of Ni, which is in agreement with the Ni-Ga-N ternary phase diagram. The observation of diffraction patterns generated by the Ni-Ga seed particles during the whole nucleation evidences the solid state of the seeds. Therefore nucleation is ruled by the vapor-solid-solid mechanism. Moreover, the QMS study showed that it is not Ga incorporation into Ni but GaN nucleation itself that limits the growth processes. For the self-induced NWs, QMS and RHEED investigations indicate very similar nucleation processes on Si(001) and Si(111) and two nucleation stages were identified. Transmission electron microscopy on samples grown on Si(001) revealed that the first stage is characterized by the competition between the nucleation of crystalline SixNy and GaN. During this stage, the Si surface strongly roughens by the formation of pits and Si mounds. At the same time, very few GaN islands nucleate. During the second stage, the amorphization of the SixNy layer leads to the massive nucleation of GaN islands that are free of the substrate lattice constraint and therefore form in the wurtzite (WZ) structure. The processes leading to NW nucleation are fundamentally different for both approaches. In the catalyst-assisted approach, Ga strongly reacts with the catalyst Ni particles whose crystal structure and phases are decisive for the NW growth. In the catalyst-free approach, N forms an interfacial layer with Si before the intense nucleation of GaN starts, and the lattice-mismatch to the substrate plays the most important role. Both approaches are viable to produce NWs within the same range of substrate temperatures and V/III ratios, provided the latter is larger than one (N-excess). Both yield monocrystalline GaN NWs of WZ structure, which grow in the Ga-polar direction. However, strong differences are also observed. First, the catalyst-assisted NWs are longer than the catalyst-free ones after growth under identical conditions (duration, substrate temperature and V/III ratio), and the former grow at the rate of the supplied N. This observation can be explained by the local Ga-excess established at the Ni-particle position. Therefore, this result is in good agreement with the catalyst-assisted nucleation model described above. In contrast, the selfinduced NWs grow with an intermediate rate between the supplied Gaand Nrates. Second, the catalyst-assisted approach provides GaN NWs that contain many

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self-branching in GaN Nanowires Induced by a Novel Vapor-Liquid-Solid Mechanism

Nanowires have great potential as building blocks for nanoscale electrical and optoelectronic devices. The difficulty in achieving functional and hierarchical nanowire structures poses an obstacle to realization of practical applications. While post-growth techniques such as fluidic alignment might be one solution, selfassembled structures during growth such as branches are promising for functi...

متن کامل

Synthesis of Serrated GaN Nanowires for Hydrogen Gas Sensors Applications by Plasma-Assisted Vapor Phase Deposition Method

Nowadays, the semiconductor nanowires (NWs) typically used in hydrogen gas sensors. Gallium nitride (GaN) with a wide band gap of 3.4 eV, is one of the best semiconductors for this function. NWs surface roughness have important role in gas sensors performance. In this research, GaN NWs have been synthesized on Si substrate by plasma-assisted vapor phase deposition at different deposition time, ...

متن کامل

Nucleation control for the growth of vertically aligned GaN nanowires

Aligned GaN nanowire arrays have high potentials for applications in future electronic and optoelectronic devices. In this study, the growth of GaN nanowire arrays with high degree of vertical alignment was attempted by plasma-enhanced CVD on the c-plane GaN substrate. We found that the lattice matching between the substrate and the nanowire is essential for the growth of vertically aligned GaN...

متن کامل

Improved control over spontaneously formed GaN nanowires in molecular beam epitaxy using a two-step growth process.

We investigate the influence of modified growth conditions during the spontaneous formation of GaN nanowires (NWs) on Si(111) in plasma-assisted molecular beam epitaxy. We find that a two-step growth approach, where the substrate temperature is increased during the nucleation stage, is an efficient method to gain control over the area coverage, average diameter, and coalescence degree of GaN NW...

متن کامل

Investigation of Nucleation Mechanism and Tapering Observed in ZnO Nanowire Growth by Carbothermal Reduction Technique

ZnO nanowire nucleation mechanism and initial stages of nanowire growth using the carbothermal reduction technique are studied confirming the involvement of the catalyst at the tip in the growth process. Role of the Au catalyst is further confirmed when the tapering observed in the nanowires can be explained by the change in the shape of the catalyst causing a variation of the contact area at t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011